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Abstract— Small correlations in noises (trial-to-
trial response variations) can decrease coding capacity
by sensory neurons dramatically. Although significant
noise correlation has been reported from almost all
cortical areas, nonstationarity, such as a drift in sig-
nals (mean responses) might engender artificial corre-
lations even if no actual correlation exists. Although
attempts to estimate noise correlation under changing
environments have been made, they were useful only
for specific cases. This paper presents consideration
of a bivariate normal distribution for activities of two
neurons and advances the proposition of a semipara-
metric method for estimating its covariance matrix in
an unbiased fashion, whatever the time course of the
signal is.
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1 Introduction
Correlations in noise (trial-to-trial variation in re-

sponse to the same stimulus) can play an important
role in information representation in the brain. The
degree to which sensory information is represented reli-
ably by neural responses has been characterized by ap-
plying an information theoretic approach in a stochas-
tic stimulus–response framework [1].

It has been shown theoretically that correlation in
response noises can be a major determinant for cod-
ing capacities of sensory information by neurons [1, 2].
Actually, even in a simple homogeneous network with
tiny correlation, having more neurons does not help at
all [3] (but see also [1, 2]). Therefore, it is extremely
important to estimate noise correlation accurately.

Although significant noise correlation has been ob-
served in almost all recorded cortical areas, it has been
pointed out that nonstationarity such as a drift in sig-
nals (mean responses to a given stimulus) can engender
artificial correlation even if no actual correlation exists
[4, 5, 6]. Although attempts to estimate noise corre-
lation under changing environments have been made,
they were applicable only to specific cases or compu-
tationally demanding [4, 5, 6].

For some specific semiparametric statistical models
[7], unbiased estimators under arbitrarily changing en-
vironments have been obtained in simple, analytically
closed forms [8, 9] by using information geometry [10].
As described in this paper, this method is applied to
the bivariate normal distribution for activities of two
neurons, thereby deriving an optimal estimator of its
covariance matrix, which works whatever the signal
drift is.

2 Model
I consider a bivariate normal distribution for activ-

ities of two neurons:

q(X; ξ,Σ)=
1

2π|Σ| 12 exp{−1
2
(X−ξ)′Σ−1(X−ξ)}. (1)

where X = {x, y} and ξ = {ξ1, ξ2} are vectors. These
analyses address the situation in which the covariance
matrix Σ is constant whereas the signals ξ can change
over time. Especially, when the signals are arbitrar-
ily distributed, but two consecutive signals are the
same, the distribution of activities {X} = {X1, X2} =
{x1, y1, x2, y2} can be described as a mixed model, as

p({X}; Σ, k) =
∫

k(ξ)q(X1; ξ,Σ)q(X2; ξ,Σ)dξ (2)

where k(ξ) denotes an unknown distribution of the
signals. The only assumption made here is that the
consecutive signals have (almost) equal value. That
assumption is minimal for successful estimation and
realistic as it is satisfied, e.g., when the signal drift is
continuous, and preferably, sufficiently slow.

p({X}; Σ, k) is a semiparametric model [7] because it
has both a vector Σ and a function k(ξ) as parameters.
It is generally not easy to estimate parameters in semi-
parametric models because a function space is fun-
damentally infinite dimensional. Although the maxi-
mum likelihood method almost always works optimally
for statistical distributions with finite number of pa-
rameters, it does not work for semiparametric models
because it includes, practically speaking, an infinite
number of parameters [9, 11]. The number of param-
eters ξ(t) (indexed by time t) increases proportionally
with the number of observations {X(t)}. Therefore,
the conventional maximum likelihood methods for ξ(t)

and Σ yield biased estimates for the semiparametric
model, as shown later.

3 Estimators
The goal of these analyses is to estimate the three

constant parameters Σ = {Σ11, Σ12(= Σ21), Σ22}
whatever the signal drift or k(ξ) is. It is obtainable
by orthogonalizing statistical parameters [7, 8, 9, 10].
I explicitly derived optimal estimators of the covari-
ance matrix Σ which work whatever k(ξ) is:

Σ̂11=
1
N

N∑
t=1

{(x(t)
1 − x(t))2 + (x(t)

2 − x(t))2} (3)

Σ̂22=
1
N

N∑
t=1

{(y(t)
1 − y(t))2 + (y(t)

2 − y(t))2}

Σ̂12=
1
N

N∑
t=1

{(x(t)
1 −x(t))(y(t)

1 −y(t))+(x(t)
2 −x(t))(y(t)

2 −y(t))}
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Figure 1: Simulated activities for two different neu-
rons used in the estimation in Fig 2. The thick gray
lines denote time-dependent signals ξ generated by the
ARIMA(0,2,1) model.

Therein, x
(t)
m and y

(t)
m denote the t-th observation of

neural activity. m(= 1, 2) is an index to distinguish
two activities for the same ξ(t). The local mean ac-
tivities were defined by x(t) = (x(t)

1 + x
(t)
2 )/2 and

y(t) = (y(t)
1 + y

(t)
2 )/2.

They are unbiased because they are normalized not
by dividing by 2(= M) but by 1(= M−1). Normaliza-
tion of this type is widely known to guarantee the unbi-
ased nature for Gaussian distributions for fixed signals
ξ. Notice that if you estimate ξ(t)’s (signals at all time
points) and Σ by using the maximum likelihood esti-
mation, the estimators for the covariance matrix Σ are
instead divided by 2(= M). Consequently, they are
biased and always give the half value of those for the
proposed method. This result might look surprising,
but, the maximum likelihood estimation works only
when the number of observation is much larger than
the number of parameters [9, 11].

4 Numerical simulation
Here, using numerical simulations, it can be shown

that the proposed method works fairly well even if
signals ξ drift continuously (violating the assumption
that the consecutive two ξ’s are exactly the same).
In the numerical simulations, first, ξ

(t)
1 and ξ

(t)
2 are

independently generated by the ARIMA(0,2,1) model
whose moving average coefficient is 0.6 [12]. Next, x(t)

and y(t) are generated from the normal distribution
whose means are the given signals {ξ(t)

1 , ξ
(t)
2 } for each

time t.
The cross correlation functions for the realization of

activities for two neurons in Fig. 1 was computed using
the proposed methods and the conventional correlation
coefficients, which assumes constant signals ξ. Here,
ρ = Σ12√

Σ11Σ22
was estimated for the time-shifted data,

where y was time-shifted while x was kept.
The proposed methods correctly caused 0 for the

time shifted data and ρ(= 0.3) for the simultaneous
data as demonstrated by a clear peak (Fig. 2). How-
ever, the conventional covariance caused a broad cross
correlation function attributable to the temporal cor-
relations in ξ’s. Note that broad cross correlation func-
tions have been observed experimentally [6].
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Figure 2: The cross correlation function estimated us-
ing the proposed method (black) and the conventional
correlation coefficient (gray) for the time shifted data.
Σ11 = Σ22 = 1 and Σ12 = 0.3 were used. A long but
single time series was used (N = 2000).

Consequently, the proposed method enables estima-
tion of the correlations existing in the simultaneous
data independently of the time-dependent signals.
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