|
8月2日(土)
テーマ |
脳の局所回路の計算機構ーテーマ概観 |
講師 |
銅谷賢治(ATR) |
講義テキスト |
Text.pdf
|
講義概要 |
|
参考文献 |
|
テーマ |
大脳皮質のニューロン、回路と機能 |
講師 |
金子武嗣(京大) |
講義概要 |
|
講義テキスト |
銅谷賢治等編 (2002) 脳の情報表現,ニューロン・ネットワーク・数理モデル.
朝倉書店, pp.131-145.
|
参考文献 |
|
8月3日(日)
テーマ |
視覚野ニューロンの時空間特徴選択性 |
講師 |
大澤五住(阪大) |
講義概要 |
|
講義テキスト |
Text.pdf
|
参考文献 |
* DeAngelis GC, Ohzawa I,
Freeman RD. Receptive-field dynamics
in the central visual pathways. Trends Neurosci. 1995
Oct;18(10):451-8. Review. PMID: 8545912
|
テーマ |
Computing with Neural
Ensembles |
講師 |
Miguel A. L. Nicolelis (Duke Univ.) |
講義概要 |
|
講義テキスト |
Nicolelis, M.A.L. Brain-machine
interfaces to restore motor functions and probe neural circuits.
Nature Reviews Neuroscience.4.417-422 (2003).
|
参考文献 |
|
テーマ |
海馬神経回路における情報ゲーティング機構解明へのアプローチ |
講師 |
関野祐子(群馬大) |
講義概要 |
我々は絶えず覚えるべき情報を取捨選択している。おもしろいことに、全く同じ情報に遭遇しても、受け手側の状態(体調、気分、過去の経験)により、情報が重要性に対する判断が異なる場合がある。記憶すべき情報は、どこでどのようにしてゲーティングされているのであろうか。新規記憶の形成に重要な部位である海馬を研究対象にして得られたこれまでの生理学実験データーを紹介し、記憶情報の選択メカニズムを実験的にどこまで検証できるのか、また理論的アプローチをどのように取り入れていくべきかを討論したい。
|
講義テキスト |
Text.pdf |
参考文献 |
* 関野祐子、白尾智明「海馬内興奮伝播のゲート機構」 特集:記憶研究最近の進歩、神経研究の進歩 45巻 283-286 (2001)
*Saji M., Kobayashi S., Ohono K., Sekino Y. Interruption of supramammillo-hippocampal
afferents prevents the genesis and spread of limbic seizures in the
hippocampus via a disinhibition mechanism. Neurosci. 97: 437-445
(2000)
*Ochiishi T., Saitoh Y., Yukawa A., Saji M., Ren Y., Shirao T., Miyamoto
H., Nakata H., Sekino Y. High level of adenosine A1 receptor-like
immunoreactivity in the CA2/CA3a region of the adult rat hippocampus.
Neurosci. 93:955-967(1999)
*Matsuoka Y., Okazaki M., Tanaka K., Katamura Y., Ohta S., Sekino
Y., Taniguchi T. Endogenous Adenosine Protects CA1 Neurons from Kainic
Acid-Induced Neuronal Cell Loss in the Rat Hippocampus. Eur.J. Neurosci.
11:3617-3625 (1999)
*Sekino Y., Obata K., Tanifuji, M. Mizuno, M. and Murayama J. Delayed
signalpropagation via CA2 in rat hippocampal slices revealed by optical
recording. J. Neurophysiol. 78, 1662-1668 (1997)
|
8月4日(月)
テーマ |
小脳皮質のニューロン・回路と機能 |
講師 |
平野丈夫(京大) |
講義概要 |
小脳皮質の構成ニューロンとそれらが形成する神経回路を説明します。各ニューロンと各シナプスのはたらきに関して実験的解析手法を紹介しながら、これまでに得られた知見を概説し、小脳皮質の神経回路全体の作動原理に関する考察と議論の材料を提供したいと思います。
|
講義テキスト |
Text.pdf |
参考文献 |
* Cerebellum. Llinas R.R. and
Walton K.D. The synaptic organization of the
brain. Ed. by Shepherd G.M. Oxford University Press,1998.
|
講義録 |
lectureHirano.pdf
|
8月5日(火)
テーマ |
大脳基底核の局所回路 |
講師 |
青崎敏彦(老人研) |
講義概要 |
大脳基底核は大脳皮質のほとんどから入力を受けますが、その最大の入力部 位は線条体です。そこから、淡蒼球の外節、視床下核などを経て出力の核である黒
質網様部、淡蒼球の内節から視床、そして再び皮質へと情報が戻されます。この講 義ではその皮質ー基底核連関がどのように動いているのかについてその概略を紹介
し、次に線条体における局所回路についての最近のデータについてお話します。
|
講義テキスト |
Text.pdf |
参考文献 |
*Alexander, G.E.
and Crutcher, M.D., "Functional architechture
of basal ganglia circuits: neural substrates of parallel processing",
Trends Neurosci 13, 266-271, 1990.
*Chesselet, M-F and Delfs, J.M., "Basal ganglia and movement
disorders: an update" Trends Neurosci 19, 417-422, 1996.
*Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles,
M. and Vaardia, E. "Physiological aspects of information processing
in the basal ganglia of normal and parkinsonian primates" Trends
Neurosci 21, 32-38, 1998.
*Bevan, M.D., Magill, P.J., Terman, D., Bolam, J.P., Wilson, C.J., "Move
to the rhythm: oscillations in the subthalamic nucleus-external globus
pallidus network." Trends Neurosci 25, 525-531, 2002.
*Aosaki, T., Graybiel, A.M., Kimura, M., "Effects of the nigrostriatal
dopamine system on acquired neural responses in the striatum of behaving
monkeys." Science 265, 412-415, 1994.
*Graybiel, A.M., Aosaki, T., Flaherty, A.W., Kimura, M. "The
basal ganglia and adaptive motor control" Science 265, 1826-1831,
1994.
*Cicchettti, F., Prensa, L., Wu, Y., Parent, A. "Chemical anatomy
of striatal interneurons in normal individuals and in patients with
Huntington's disease" Brain Res Rev 34, 80-101, 2000.
*Suzuki, T., Miura, M., Nishimura, K. and Aosaki, T. "Dopamine-dependent
synaptic plasticity in the striatal cholinergic interneurons" J
Neurosci 21, 6492-6501, 2001.
|
テーマ |
Neuronal processing during Up states in cortex and basal ganglia |
講師 |
Dietmar Plenz (NIMH) |
講義概要 |
Self-organization of neural networks is a central question in neuroscience. How does the brain achieve and maintain activity states at which information processing is possible?
In mammals, the cortex is responsible for information processing that ultimately leads to adaptive behavior in an ever changing environment. To achieve this task, the cortex is greatly helped by the basal ganglia that reside as a collection of highly diverse nuclei in the forebrain. My group focuses on the neuronal dynamics in cortical networks and the processing of cortical inputs in the striatum, the first stage of the basal ganglia. More specifically, we aim at the understanding of critically self-organized network states in cortex and its resultant ヤUpユ and ヤDownユ state dynamics in the striatum.
Neuronal networks exist at many different levels and come in various sizes, so where shall we start? For sure we know that knowledge of individual neuron properties is insufficient to predict the number of activity patterns such networks can generate. The task is even more challenging when considering networks between different brain structures such as the cortex and the striatum.
Thus, we designed experimental systems in vitro under defined tissue culture conditions that allowed for precisely targeted in vitro reconstruction of cortex - basal ganglia networks using organotypic cultures. In these in vitro networks, the cortical culture consists of up to 50,000 neurons with all major layers and cell classes preserved. Similarly, the cultures from basal ganglia nuclei, e.g. the striatum, contain tens of thousands of neurons with all major cell classes integrated into the ongoing network dynamics.
These evolved in vitro systems have already been proven to acquire some of the most complex network states so far described in vivo such as cortical ~40 Hz oscillations [1] and striatal Up and Down states [2]. They have been instrumental in discovering new network states e.g. a central pacemaker of the basal ganglia comprised of subthalamic nucleus and globus pallidus [3].
We use primarily electrophysiological and computational methods to study these neuronal networks. Specific questions relate to the intra- and internuclei generation of network activities, their stability conditions, the transfer of activity patterns to target nuclei, and the dynamic characteristics of single neuron processing under such network activity. Our recent work has focused on the discovery of a self-organized critical network state in cortex [4], dendritic processing in striatal neurons during Up-states [5], and synaptic transmission between spiny projection neurons [6].
Our experimental strategies and conceptual approaches establish conditions that allow for a detailed classification of normal and abnormal neuronal activity patterns that have been observed in human neurological diseases and corresponding animal models (i.e. Parkinson's disease, Huntington's Chorea, Alzheimerユs disease). Insights into critically self-organized network states will provide essential information for our understanding these neurological disorders and normal brain function.
|
参考文献 |
1 Plenz, D. and Kitai, S. T.
(1996) Generation of high frequency oscillations in cortical circuits
of somatosensory cortex cultures. J. Neurophysiol. 76, 4001-4005
2 Plenz, D. and Kitai, S. T. (1998) 'Up' and 'down' states in striatal
medium spiny neurons simultaneously recorded with spontaneous activity
in fast-spiking interneurons studied in cortex-striatum-substantia
nigra organotypic cultures. J. Neurosci. 18, 266-283
3 Plenz, D. and Kitai, S. T. (1999) A basal ganglia pacemaker formed
by the subthalamic nucleus and external globus pallidus [see comments].
Nature 400, 677-682
4 Beggs, J.M. and Plenz, D. (2003) A branching process underlies
self-organized critical behavior in isolated cortical networks
(submitted).
5 Kerr, J.N. and Plenz, D. (2002) Dendritic calcium encodes striatal
neuron output during Up-states. J. Neurosci. 22, 1499-1512
6 Czubayko, U. and Plenz, D. (2002) Fast synaptic transmission
between striatal spiny projection neurons. Proc. Natl. Acad. Sci.
U. S. A 99, 15764-15769
|
テーマ |
Synfire chain の実験と理論 |
講師 |
加藤英之(New York Univ.) |
講義概要 |
synfire chainの基本的なアイディアを解説した後,Alex Reyesがスライス標本
で行ったsynfire chain生成の実験を紹介する.そのあと,それを解析する確率過程の手法を紹介する
|
講義テキスト |
Text.pdf |
参考文献 |
*Diesmann M, Gewaltig MO, Aertsen
A.
Stable propagation of synchronous spiking in cortical neural networks.
Nature. 1999 Dec 2;402(6761):529-33.
*Cateau H, Fukai T.
A stochastic method to predict the consequence of
arbitrary forms of spike-timing-dependent plasticity.
Neural Comput. 2003 Mar;15(3):597-620.
|
|
|
|